
Latency, Bandwidth, and Concurrent Issue

Limitations in High-Performance CFD

W. D. Gropp1, D. K. Kaushik1, D. E. Keyes2, and B. F. Smith1

1 Math. & Comp. Sci. Division, Argonne National Laboratory, Argonne, IL 60439

fgropp,kaushik,bsmithg@mcs.anl.gov

2 Math. & Stat. Department, Old Dominion University, Norfolk, VA 23529

ISCR, Lawrence Livermore National Laboratory, Livermore, CA 94551

and ICASE, NASA Langley Research Center, Hampton, VA 23681

keyes@icase.edu

Abstract

To achieve high performance, a parallel algorithm needs to effectively

utilize the memory subsystem and minimize the communication volume

and the number of network transactions. These issues gain further im-

portance on modern architectures, where the peak CPU performance is

increasing much more rapidly than the memory or network performance.

In this paper, we present some performance enhancing techniques that

were employed on an unstructured mesh implicit solver. Our experimen-

tal results show that this solver adapts resonably well to the high memory

and network latencies.

Keywords: latency tolerance; memory hierarchy; memory bandwidth; cache

misses; hybrid programming model; high-performance computing

1 Introduction and Motivation

Many of the “Grand Challenges” of computational science are formu-

lated as partial differential equations (PDEs). PDE solvers typically per-

form at a computational rate well below other scientific simulations (e.g.,

with dense linear algebra or N-body kernels) on modern architectures

with deep memory hierarchies. The primary reason for this relatively

poor performance is good algorithmic efficiency in the traditional sense:

low work to data size ratio, relative to clock/bandwidth ratios in contem-

porary microprocessors. High memory and network latencies and imbal-

ances in superscalar architecture also play a role.

In a typical PDE computation, four basic groups of tasks can be

identified, based on the criteria of arithmetic concurrency, communica-

tion patterns, and the ratio of operation complexity to data size within

the task. These four distinct groups, present in most implicit codes, are

vertex-based loops, edge-based loops, recurrences, and global reductions.

Each of these groups of tasks stresses a different subsystem of contem-

porary high-performance computers. After tuning, linear algebraic recur-

rences run at close to the aggregate memory-bandwidth limit on perfor-

mance, flux computation loops over edges are bounded either by memory

2

bandwidth or instruction scheduling, and parallel efficiency is bounded

primarily by slight load imbalances at synchronization points [2, 3].

In this paper, we present some strategies that have been effective

in tolerating the latencies arising from the hierarchical memory system

(Section 2) and network (Section 3). We also compare the different pro-

gramming models in Section 4 from a performance standpoint. Our demon-

stration code, PETSc-FUN3D, solves the Euler and Navier-Stokes equa-

tions of fluid flow in incompressible and compressible forms with second-

order flux-limited characteristics-based convection schemes and Galerkin-

type diffusion on unstructured meshes. The solution algorithm employed

in PETSc-FUN3D is pseudo-transient Newton-Krylov-Schwarz (NKS)

[5] with block-incomplete factorization on each subdomain of the Schwarz

preconditioner and with varying degrees of overlap.

2 Adapting to the High Memory Latency

Since the gap between memory and CPU speeds is ever widening [6], it

is crucial to maximally utilize the data brought into the levels of mem-

ory hierarchy that are close to the CPU. The data structures for primary

(e.g., momenta and pressure) and auxiliary (e.g., geometry and consti-

tutive parameter) fields must be adapted to hierarchical memory. Three

simple techniques have proved very useful in improving the performance

of the FUN3D code, which was originally tuned for vector machines. We

3

have usedinterlacing (creating spatial locality for the data items needed

successively in time),structural blocking for a multicomponent system

of PDEs (cutting the number of integer loads significantly, and enhanc-

ing reuse of data items in registers), andvertex and edge reorderings

(increasing the level of temporal and spatial locality in cache). These

techniques are discussed in detail in [3].

Figure 1 shows the effectiveness of these techniques on one processor

of the SGI Origin2000. We observe that the edge reordering reduces the

TLB misses by two orders of magnitude, while secondary cache misses

are reduced by a factor of 3.5.

Another aspect of memory hierarchy that attains importance in the

computation of PDEs is the large gap between the required and the avail-

able memory bandwidths [2]. Since linear algebraic kernels run close

to the available memory bandwidth, we store elements of the precon-

ditioner for the Jacobian matrix in single-precision to improve the per-

formance of the sparse triangular matrix solution phase. In our “matrix-

free” implementation, the Jacobian itself is never explicitly needed; see

[5]. All computation with the preconditioner is still done in full (dou-

ble) precision. The performance advantages are shown in Table 1, where

the single-precision storage version runs at almost twice the rate of the

double-precision storage version, clearly identifying memory bandwidth

4

as the bottleneck. The number of time steps needed to converge is not

affected, since the preconditioner is already very approximate by design.

3 Tolerating the Network Limitations

Domain-decomposed parallelism for PDEs is a natural means of over-

coming Amdahl’s law in the limit of fixed problem size per processor.

Computational work on each evaluation of the conservation residuals

scales as the volume of the (equal-size) subdomains, whereas commu-

nication overhead scales only as the surface. This ratio is fixed when

problem size and processors are scaled in proportion, leaving only global

reduction operations over all processors as an impediment to perfect per-

formance scaling.

When the load is perfectly balanced (easily achieved for static meshes)

and local communication is not an issue because the network is scalable,

the optimal number of processors is related to the network diameter. For

logarithmic networks, like a hypercube, the optimal number of proces-

sors,P , grows directly in proportion to the problem size,N . For ad-

dimensional torus network,P / N d=d+1. The proportionality constant

is a ratio of work per subdomain to the product of synchronization fre-

quency and internode communication latency.

In Table 2, we present a closer look at the relative cost of computa-

tion for PETSc-FUN3D for afixed-size problem of 2.8 million vertices

5

on the ASCI Red machine, from 128 to 3072 nodes. The intent here is

to identify the factors that retard the scalability. The overall parallel ef-

ficiency (denoted by�overall) is broken into two components:�alg mea-

sures the degradation in the parallel efficiency due to the increased iter-

ation count of this (non-coarse-grid-enhanced) NKS algorithm as the

number of subdomains increases, while�impl measures the degradation

coming from all other nonscalable factors such as global reductions, load

imbalance (implicit synchronizations), and hardware limitations.

From Table 2, we observe that the buffer-to-buffer time for global

reductions for these runs is relatively small and does not grow on this ex-

cellent network. The primary factors responsible for the increased over-

head of communication are the implicit synchronizations and the ghost

point updates (interprocessor data scatters).

The increase in the percentage of time (3% to 10%) for the scatters

results more from algorithmic issues than from hardware/software lim-

itations. With an increase in the number of subdomains, the percentage

of grid point data that must be communicated also rises. For example,

the total amount of nearest neighbor data that must be communicated

per iteration for 128 subdomains is 3.6 gigabytes, while for 3072 sub-

domains it is 14.2 gigabytes. Although more network wires are available

when more processors are employed, scatter time increases. When prob-

lem size and processor count are scaled together, we expect scatter time

6

to occupy a fixed percentage of the total time and load imbalance to be

reduced at high granularity.

4 Choosing the Right Programming Model

The performance results above are based on subdomain parallelism using

the Message Passing Interface (MPI) [4]. With the availability of large-

scale SMP clusters, different software models for parallel programming

require a fresh assessment. For machines with physically distributed mem-

ory, MPI is a natural and successful software model. For machines with

distributed shared memory and nonuniform memory access, both MPI

and OpenMP have been used with respectable parallel scalability. For

clusters with two or more SMPs on a single node, the mixed software

model of threads within a node (OpenMP being a special case of threads

because of the potential for highly efficient handling of the threads and

memory by the compiler) and MPI between the nodes appears natural.

Several researchers (e.g., [1, 7]) have used this mixed model with rea-

sonable success.

We investigate the mixed model by employing OpenMP in the flux

calculation phase only. This phase takes over 60% of the execution time

on ASCI Red and is an ideal candidate for shared-memory parallelism

because it does not suffer from the memory bandwidth bottleneck. In

Table 3, we compare the performance of this phase when the work is

7

divided by using two OpenMP threads per node with the performance

when the work is divided using two independent MPI processes per node.

There is no communication in this phase. Both processors work with the

same amount of memory available on a node; in the OpenMP case, it is

shared between the two threads, while in the case of MPI it is divided

into two address spaces.

The hybrid MPI/OpenMP programming model appears to be a more

efficient way to employ shared memory than that of heavyweight subdomain-

based processes (MPI alone), especially when the number of nodes is

large. The MPI model works with a larger number of subdomains (equal

to the number of MPI processors), resulting in slower rate of conver-

gence. The hybrid model works with fewer chunkier subdomains (equal

to the number of nodes), resulting in faster convergence rate and shorter

execution time, despite the fact that there is some redundant work when

the data from the two threads is combined because of the lack of a vector-

reduce operation in the OpenMP standard (version 1) itself.

5 Conclusions and Future Directions

Unstructured implicit CFD solvers are amenable to scalable implemen-

tation, but careful tuning is needed to obtain the best product of per pro-

cessor efficiency and parallel efficiency. The principal nonscaling factor

is implicit synchronization, not the communication itself.

8

For solution algorithms for systems modeled by PDEs on contempo-

rary high-end architecture, critical research directions are: (1) less syn-

chronous algorithms, (2) memory latency tolerant algorithms (e.g. algo-

rithms that can reuse matrix), and (3) hybrid programming models. To

influence future architectures while adapting to current ones, we recom-

mend adoption of new benchmarks featuring implicit methods on un-

structured grids, such as the application featured here.

Acknowledgments

Gropp and Smith were supported by the Mathematical, Information, and

Computational Sciences Division subprogram of the Office of Advanced

Scientific Computing Research, U.S. Department of Energy, under Con-

tract W-31-109-Eng-38. Kaushik’s support was provided by a GAANN

Fellowship from the U.S. Department of Education and by Argonne Na-

tional Laboratory under contract 983572401. Keyes was supported by the

National Science Foundation under grant ECS-9527169, by NASA under

contracts NAS1-19480 and NAS1-97046, by Argonne National Labora-

tory under contract 982232402, and by Lawrence Livermore National

Laboratory under subcontract B347882.

9

References

1. S. W. Bova, C. P. Breshears, C. E. Cuicchi, Z. Demirbilek, and H. A. Gabb. Dual-level

parallel analysis of harbor wave response using MPI and OpenMP.Int. J. High Performance

Computing Applications, 14:49–64, 2000.

2. W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Toward realistic performance

bounds for implicit CFD codes. In D. Keyes, A. Ecer, J. Periaux, N. Satofuka, and P. Fox,

editors,Proceedings of Parallel CFD’99, pages 233–240. Elsevier, 1999.

3. W. D. Gropp, D. K. Kaushik D. E. Keyes, and B. F. Smith. Performance modeling and

tuning of an unstructured mesh CFD application. InProceedings of SC2000. IEEE Computer

Society, 2000.

4. W. D. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable Parallel Programming with the

Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA, 1999.

5. W. D. Gropp, L. C. McInnes, M. D. Tidriri, and D. E. Keyes. Globalized Newton-Krylov-

Schwarz algorithms and software for parallel implicit CFD.Int. J. High Performance Com-

puting Applications, 14:102–136, 2000.

6. J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach. Mor-

gan Kaufmann, 1996.

7. D. J. Mavriplis. Parallel unstructured mesh analysis of high-lift configurations. Technical

Report 2000-0923, AIAA, 2000.

10

1 .00 E + 0 4

1 .00 E + 0 5

1 .00 E + 0 6

1 .00 E + 0 7

1 .00 E + 0 8

1 .00 E + 0 9

B ase N O E R Interlacing N O E R B lo cking N O E R
B ase Interlacing B lo cking

TLB Misses

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Secondary Cache Misses

Fig. 1. TLB misses (log scale) and secondary cache misses (linear scale) on one processor of an

Origin2000 for a 22,677-vertex case, showing dramatic improvements in data locality due to data

ordering (grid edge reordering and field variable interlacing) and blocking techniques. (“NOER”

denotesno edge ordering; otherwise edges are reordered by default.)

Table 1. Execution times (in seconds) on a 250 MHz Origin2000 for a fixed-size 357,900-vertex

case with single or double precision storage of the preconditioner matrix. The results suggest that

the linear solver time is bottlenecked by memory bandwidth. This conclusion is supported by

analytical estimates in [2].

Number Computational Phase
of Linear Solve Overall

ProcessorsDoubleSingle DoubleSingle

16 223 136 746 657
32 117 67 373 331
64 60 34 205 181
120 31 16 122 106

11

Table 2. Scalability bottlenecks on ASCI Red for a fixed-size 2.8M-vertex mesh. The precondi-

tioner used in these results is block Jacobi with ILU(1) in each subdomain. We observe that the

principal nonscaling factor is the implicit synchronization.

Number of Efficiency
ProcessorsIts Time Speedup�overall �alg �impl

128 22 2,039s 1.00 1.00 1.00 1.00
256 24 1,144s 1.78 0.89 0.92 0.97
512 26 638s 3.20 0.80 0.85 0.94
1024 29 362s 5.63 0.70 0.76 0.93
2048 32 208s 9.78 0.61 0.69 0.89
3072 34 159s 12.81 0.53 0.65 0.82

Percent Times for Scatter Scalability
Total Data Application

Global Implicit Ghost Sent per Level Effective
Number of Reduc-Synchro- Point Iteration Bandwidth per
Processors tions nizationsScatters (GB) Node (MB/s)

128 5 4 3 3.6 6.9
256 3 6 4 5.0 7.5
512 3 7 5 7.1 6.0
1024 3 10 6 9.4 7.5
2048 3 11 8 11.7 5.7
3072 5 14 10 14.2 4.6

Table 3. Execution time on the 333 MHz Pentium Pro ASCI Red machine for function evaluations

only for a 2.8M-vertex case, comparing the performance of the hybrid (MPI/OpenMP) and the

distributed memory (MPI alone) programming models.

MPI/OpenMP MPI
Threads Processes
per Node per Node

Nodes 1 2 1 2

256 483s 261s 456s258s
2560 76s 39s 72s 45s
3072 66s 33s 62s 40s

12

